

INVESTIGATE: LOGARITHMS

A. COMMON LOGARITHM BASE "10"

• Evaluate each logarithm to try to determine what this function does.

- **logarithm:** an exponent. In $x = c^{y}$, y is called the logarithm to the base c of x
- <u>common logarithm</u>: a logarithm with base 10

$$log_{10}x = y$$
 or $logx = y$ means $\underline{10^{9}} = X$
 $\int_{base}^{10} exponent$

notes: \rightarrow logarithms are <u>not</u> restricted to a base of 10

- \rightarrow any positive base except 1 can be used
- \rightarrow Remember that a logarithm is just an exponent

B. LOGARITHM OF BASE "c"

• Write each logarithmic equation in <u>exponential</u> form using a base 2.

• <u>logarithmic function</u>: a function of the form $y = log_c x$, where c > 0, $c \neq 1$, x > 0 and is the inverse of the exponential function $y = c^x$

$$log_{c}x = y \quad \text{means} \quad \underbrace{C^{y} = x}_{\substack{y = x \\ equal \\ gual \\ function}} \xrightarrow{Y} \text{ Important properties:} \\ log_{c}c = \underbrace{log_{c}1 = O}_{\substack{z = 0}} \quad log_{c}c^{x} = \underbrace{X}_{\substack{z = x \\ elog_{c}c = X}} \quad c^{log_{c}x} = \underbrace{X}_{\substack{z = x \\ z = X}} \quad c$$

 $C_{i}^{ij} = C^{ij}$

EVALUATING A LOGARITHM

<u>EX.</u> 1: Evaluate. Confirm you answer by writing the corresponding exponential equation.

a) $\log_{6}36 = 2$ ($\square = 36$ b) $\log_{2}32 = 5$ c) $\log_{b}b^{2} = 2$ b) $\log_{2}32 = 5$ c) $\log_{b}b^{2} = 2$ b) $\log_{2}32 = 5$ c) $\log_{b}b^{2} = 2$

d)
$$\log_9 \sqrt[5]{81} = \frac{2}{5}$$

e) $\log_3 9\sqrt{3} = \frac{5}{2}$
f) $\log 0.0001 = -4$
 $3^{11} = 9^2 \sqrt{3}^{11}$
 $= (3^2)(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$
 $= (3^{2/2})(3^{1/2})$

EX. 2: Write each equation in exponential form.

a)
$$\log_3 9 = 2$$

 $3^2 = 9$
b) $\log_4 0.25 = -1$
c) $\log_a b = c$
 $3^2 = 0.25$

EX. 3: Write each equation in logarithmic form.

a) $3^{5} = 243$ $109_{3}^{2}243 = 5$ $109_{4}^{-2} = \frac{1}{16}$ $109_{4} = -2$ $109_{16}^{-2} = 9_{16}^{-2}$

DETERMINE AN UNKNOWN IN AN EXPRESSION IN LOGARITHMIC FORM

EX. 4: Determine the value of x.

a)
$$\log_4 x = -2$$

b) $\log_{16} x = -\frac{1}{4}$
c) $\log_x 9 = \frac{2}{3}$
 $\begin{pmatrix} \chi^2 \end{pmatrix}^3 = \begin{pmatrix} \chi^2 \end{pmatrix}^3 =$

<u>EX.</u> 5: Without using graphing technology, estimate the value of log_350 ?

$$\begin{array}{l} |0g_{3}SD = \chi \\ 3^{\times} = 50 \\ \text{Guess +} \\ \text{check} \quad 3^{3} = 27 \\ 3^{4} = 91 \\ 3^{3.50} = 46.76 \\ 3^{3.50} = 49.95 \\ 3^{3.57} = 50.5 \end{array}$$

ESTIMATE THE VALUE OF A LOGARITHM

b) Sketch the graphs of f(x) and its inverse

AN APPLICATION OF LOGARITHMS

<u>EX.</u> 7: In 1935, American seismologist Charles R. Richter developed a scale formula for measuring the magnitude of earthquakes. The Richter magnitude, M, of an earthquake is defined as $M = log \frac{A}{A_0}$

A: amplitude of the ground motion (microns) - measured by a sensitive seismometer

 A_0 : amplitude corrected for distance to actual earthquake, that would be expected for a "standard" earthquake

a) In 1946, an earthquake struck Vancouver Island. It had an amplitude that was $10^{7.3}$ times A_0 . What was the earthquakes magnitude on the Richter scale?

$$M = \log \frac{10^{7.3} K_{\odot}}{K_{\odot}}$$

$$M = \log \log 10^{7.3} \implies 10^{10} = 10^{7.3} \therefore 1 = \frac{7.3}{10}$$

FYI: Vancouver Island's largest historic earthquake (and Canada's largest historic onshore earthquake) was a magnitude 7.3 event that occurred at 10:13 a.m. on Sunday June 23, 1946. The epicentre was in the Forbidden Plateau area of central Vancouver Island, just to the west of the communities of Courtenay and Campbell River. http://www.earthquakescanada.nrcan.gc.ca/histor/20th-eme/1946/1946photos-eng.php

b) The strongest recorded earthquake in Canada struck Haida Gwaii, in 1949. It had a Richter reading of 8.1. How many times as great as A_0 was its amplitude?

c) Compare the seismic shaking of the 1949 Haida Gwaii earthquake with the 1946 Vancouver Island earthquake.

$$\frac{|0^{8.1}}{|0^{7.3}} = |0^{0.8}$$

= 6.3 x as great

PC 12 WORKSHEET 8.1: CALCULATING WITH LOGS

- Calculate each answer to 2 decimal places.
- Keep track of pairs of questions which have equal results
 - → Label the first matching pair with A's (#4 & #5) since they have equal results... Label the next matching pair with B's ... and so on...

22. 0.80

24. 0.99

Note: $log^2(x)$ must be entered as $log(x)^2$ on the calculator

1. log 739		12. 10 ^{log2.7}
2. 7log39		13. $\log(10^{2.7})$
3. $\log(-6)$		14. $\log 2.7 + 5$
4log6		15. $\log(2.7+5)$
5. $\log\left(\frac{1}{6}\right)$	8	16. $\log 2.7 + \log 5$
6. $\log^2(5.2)$		17. $\log(2.7 \times 5)$
7. $\log(5.2^2)$		18. $\log \sqrt{\pi}$
8. 2log5.2		$19. \ \frac{\log \pi}{2}$
9. $\frac{3}{2}\log(2.7^2)$		20. $\log \frac{\pi}{2}$
10. 3log 2.7		21. $\log \pi - \log 2$
11. $-\frac{3}{2}\log^2(2.7)$		22. log 2π
23. 2logπ		24. $\log \pi^2$
ANSWERS:		
1. 2.87		12. 2.7
2. 11.14		13. 2.7
3. undefined		14. 5.43
40.78		15. 0.89
50.78		16. 1.13
6. 0.51		17. 1.13
7. 1.43		18. 0.25
8. 1.43		19. 0.25
9. 1.29		20. 0.20
10. 1.29		21. 0.20

11. -0.28

23. 0.99

FYI: Vancouver Island's largest historic earthquake (and Canada's largest historic onshore earthquake) was a magnitude 7.3 event that occurred at 10:13 a.m. on Sunday June 23, 1946. The epicentre was in the Forbidden Plateau area of central Vancouver Island, just to the west of the communities of Courtenay and Campbell River. http://www.earthquakescanada.nrcan.gc.ca/histor/20th-eme/1946/1946/hotos-eng.php

Earthquake map of Canada

Screen reader users, turn on the "expand abbreviations" configuration setting in your Screen Reader to hear entire words instead of abbreviations.

