PC 12 SEC 7.3: SOLVING EXPONENTIAL EQUATIONS FUNCTIONS

REVIEW: EXPONENT LAWS (Mostly Review from Grade 9 & 10)

 \rightarrow **a** and **b** are rational or variable bases AND **m** and **n** are rational exponents

		EXAMPLES	
Product of Powers (multiplication)	$(a^m)(a^n) = a^{mtn}$	2 ³ ·2 ⁴ = 2 ⁷ = 1	28
Quotient of Powers (division) a≠0	$(a^m) \div (a^n)$ or $\left(\frac{a^m}{a^n}\right) = \mathcal{U}^{m-n}$	$\frac{2^6}{2} = 2^5$	
Power of a Power	$(a^m)^n = \mathcal{A}^{\mathbf{m}\cdot\mathbf{n}}$	$(2^3)^4 = 2^{12}$	
Power of a Product	$(\underline{ab})^m = \mathcal{A}^m \mathbf{b}^m$	$(2x)^3 = 2^3 x^3 =$	8x ³
Power of a Quotient b≠0	$\left(\frac{a}{b}\right)^n = \frac{a}{b}^n$	$\left(\frac{x}{y}\right)^5 = \frac{x^5}{y^5}$	
Zero Exponent a≠0 frachmal	$a^0 = 1$	$\left(\frac{2}{3}\right)^{\circ} = 1$	×=× 1
Rational Exponent a≠0, n≠0 ¥ {\lwCr power	$(a^{\frac{1}{n}})^m = a^{\frac{m}{n}}$ or $(\sqrt[n]{a}^m) = (\sqrt[n]{a})^m$	$(64^{\frac{1}{3}})^2 = 64^{\frac{2}{3}}$ $\sqrt[3]{64^2} = 16$	$(9_{x})^{\frac{3}{2}} = 9^{\frac{3}{2}} \times \frac{3}{2}$ $2\sqrt{9^{3}}, 2\sqrt{x^{3}} = 27 \times \sqrt{x}$
Negative Exponent a≠0 *reciprocals	$a^{-n} = \left(\frac{1}{a^n}\right)$ or $a^n = \left(\frac{1}{a^{-n}}\right)$	$(x^{-3})^{\frac{1}{5}} = \chi^{-\frac{3}{5}}$ = $\frac{1}{\chi^{3/5}}$	$25^{-1.5} = 25^{-3/2}$ = $\frac{1}{25^{-3/2}}$
		=	= 2 (253 ⁻ 125

INVESTIGATE : WRITING POWERS WITH THE SAME BASE

EXPONENTIAL FORM	27	26	25	24	2 ³	2 ²	2'	2°	
STANDARD FORM	128	64	32	16	8	4	2	1	
			1						
FORM	2-1	2-6	2-5	2-4	2-3	2-2	2-1	2°	
STANDARD FORM	$\frac{1}{128}$	$\frac{1}{64}$	$\frac{1}{32}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	
				1	1	1			
EXPONENTIAL FORM	34	33	3 ²	3'	3°	3-(3-2	3-3	3-4
STANDARD FORM	81	27	9	3	1	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{27}$	$\frac{1}{81}$
			1	1	1				
EXPONENTIAL FORM	44	43	42	41	40	4-1	4-2	4-3	4-4
STANDARD FORM	256	64	16	4	1	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{256}$
		_	1		1	1			
EXPONENTIAL FORM	54	5^{3}	5 ²	5	5	5	5-2	5-3	5-4
STANDARD FORM	625	125	25	5	1	$\frac{1}{5}$	$\frac{1}{25}$	$\frac{1}{125}$	$\frac{1}{625}$
			1	1	1	1		-	
EXPONENTIAL FORM	64	63	62	6'	6°	6-1	6-2	6-3	6-4
STANDARD FORM	1296	216	36	6	1	1	1	1	1

INVESTIGATE: DIFFERENT WAYS TO EXPRESS EXPONENTIAL FUNCTIONS

- exponential equations: an equation that has a variable as an exponent
- A. Rewrite each side of the equation $2^{x} = 8^{x-1}$ with the same base if possible, then solve

 $2^{x} = (2^{3})^{x-1}$ $2^{x} = 2^{3x-3} + drop \text{ base}$ $x = 3x-3 \quad [x = 3]$

Method 2: Without Using Graphing Calculator

B. Rewrite each side of the equation $3^x = 4^{2x-1}$ with the same base if possible, then solve

CHANGE THE BASE OF POWERS

EX. 1:a) Write $27\frac{1}{3}(\sqrt[3]{81})^2$ as a power with base 3 b) Write $8\frac{2}{3}(\sqrt{16})^3$ as a power with base 2

$$(3^{3})^{1/3} \cdot (3^{4})^{2/3}$$

= 3¹ \cdot 3^{5/3}
= 3^{1 + 5/3} 3^{3/3} + 5/3
= 3^{1/3} 2^{3/3} + 5/3
= 3^{1/3} 2

SOLVE AN EQUATION BY CHANGING THE BASE

<u>EX.</u> 2: a) Solve $25^x = (\frac{1}{125})^{2x+1}$

Method 1: Using Change of Base

$$(5^{2})^{X} = (5^{-3})^{2x+1}$$

$$5^{2x} = 5^{-6x-3}$$

$$2^{x} = -6x-3$$

$$3x = -3$$

$$X = -\frac{3}{8}$$

b) Solve
$$9^{4x} = 27^{x-1}$$

Method 1: Using Change of Base

$$(3^{2})^{4x} = (3^{3})^{x-1}$$

$$3^{5x} = 3^{3x-3}$$

$$0^{-3x} = -3^{x}$$

$$5x = -3$$

$$x = -3/5$$

Method 2: Using Graphing Calculator

Method 2: Using Graphing Calculator

EX. 3: Solve $2(5)^x = 3^{x+1}$

Method 2: Using Graphing Calculator

 $\frac{\text{Method 1: Using Systematic Trial}}{Vy \ x=1} 2(5)' = 3^{1+1} \\ 10 = 9$ $\frac{1}{Vy} x=0.9 \quad 2(5)^{0.8} = 3^{0.8+1} \\ 7.25 = 7.22$ eterric

SOLVE PROBLEMS INVOLVING EXPONENTIAL EQUATIONS WITH DIFFERENT BASES

<u>EX.</u> 4: Determine how long \$1000 needs to be invested in an account that earns 8.3% compounded semiannually before it increases to in value to \$1490.

$$A = P(1 + \frac{r}{n})^{nt}$$

$$P = 1000$$

ASSIGNMENT: 1) Worksheet 7.3: Solving Exponential Equations 2) pg. 364 # 1-7, 10, 12, 13, *18

1. Solve $2^{4x-1} = 8^x$

Check:

2. Solve $6^{x+1} = 36^{x-1}$

Check:

3. Solve $2^{\times} = 5$, using

<u>Method 1: Sytematic Trial</u>

Method 2: Graphing Calculator

Method 3: Logarithms

