INVESTIGATE EXPONENTIAL FUNCTION

- exponential function: a function of the form $y=c^{x}$, where c is a constant $(c>0)$ and x is a variable
A. Growth: $y=c^{x}, c>1$,
ex. $y=2 k$
$D: x \in \mathbb{R}$
$R: \quad y>0$
x-int: $\frac{\text { none }}{1}$

x	y
-3	$1 / 8$
-2	$1 / 4$
-1	$1 / 2$
0	1
1	2
2	4
3	5

The function is Increasing
\qquad

asymptote: $y=0(x-a x s) \rightarrow$ harizutal asymptote
applications: population growth, morey/inuestments
B. Decay: $y=c^{x}, 0<c<1$,
ex. $y=\frac{1}{2} x$
$D: x \in \mathbb{R}$
R: $y>0$
x-int: nome
y-int: 1

x	y
-3	8
-2	4
-1	2
0	1
1	$1 / 2$
2	$1 / 4$
3	$1 / 8$

The function is \qquad decreasing
\qquad
asymptote: $\quad y=0$
applications: radioactive decay, population decline, drugs leave your

EX. 1: Sketch the graph of each function.
a) $y=3^{x}$

Method A: Using a Table of Values
Method B: Using a Graphing Calculator

The function is increasing asymptote: $\quad y=0$
b) $y=\left(\frac{1}{3}\right)^{x} \quad$ Method $A: \underline{U s i n g ~ a ~ T a b l e ~ o f ~ V a l u e s ~}$

Method B: Using a Graphing Calculator

The function is decreasing asymptote: $\quad y=0$
WRITE THE EXPONENTIAL FUNCTION GIVEN ITS GRAPH

EX. 2: What function of the form $y=c^{x}$ can be used to describe the graph shown?
a)
 decay function
(decreasing)

x	y
-2	16
-1	4
0	1
1	$1 / 4$
2	$1 / 16$
3	$1 / 64$

$$
y=\left(\frac{1}{4}\right)^{x}
$$

EX. 2 continued What function of the form $y=c^{x}$ can be used to describe the graph shown?
b)

growth function
(increasing)

x	y
-2	$1 / 25$
-1	$1 / 5$
0	1
1	5
2	25

$$
r=\frac{t_{2}}{E_{1}}=\frac{25}{5}=-5
$$

Verify your answer

$$
\begin{aligned}
& \text { check wi }(2,25) \\
& 25=5^{2} \\
& 25=25
\end{aligned}
$$

$$
y=5^{x}
$$

APPLICATION OF AN EXPONENTIAL FUNCTION
exponential growth: an increasing pattern of values that can be modeled by a function of the form $y=c^{x}$, where $c>1$
exponential decay: a decreasing pattern of values that can be modeled by a function of the form $y=c^{x}$, where $0<c<1$

EX. 3: A certain bacteria population triples every week. This is modeled by the exponential graph shown.
a) What is the initial population? \qquad 1

What is the population approaching as time increases? no limit
b) What is the domain: \qquad $x \geq 0$ and range: \qquad $y \geq 1$

c) Write the exponential growth model that relates the number of bacteria (B) to the time (t) in weeks.

$$
B=3^{t}
$$

d) Estimate how many days it would take for the bacteria to increase to 8 times the quantity on day 1.
from the graph ~ 1.8 weeks

$$
\begin{aligned}
\text { algebraically } & 3^{1.8}=7.22 \\
8=3^{t} & 3^{1.9}=8.06 \\
\text { guess +check } & \sim 1.9 \text { weeks } \times 7 \\
& \\
& =\sim 13.3 \text { days }
\end{aligned}
$$

- half-life: the length of time for an unstable element to spontaneously decay to one half its original mass (can be modeled with an exponential decay graph
ex. 100 grams of a substance with a half-life of 6 days

Time (day)	Amount (grams)
0	100
6	50
12	25
18	12.5
24	6.25
30	3.125
36	1.5625

EX. 4: A radioactive sample of radium ($\mathrm{Ra}-225$) has a half-life of 15 days. The mass (grams) remaining over time (days) can be modeled by the exponential graph shown.
a) What is the initial mass of Ra-225 in the sample? Iq What is the mass of Ra-225 approaching as time increases? 0
b) What is the domain: $x \geq 0$ and range: $0<m \leq 1$
c) Write the exponential decay model that relates mass to time (15 day intervals)

$$
m=\left(\frac{1}{2}\right)^{t}
$$

d) Estimate how many days it would take for Ra-225 to decay $10 \frac{1}{30}$ of its original mass.

Method A: Using Graph
Method B: Using Table

$$
r=0.5
$$

Method C: Using model

$$
M=\left(\frac{1}{2}\right)^{t}
$$

$$
\frac{\text { guess + chect }}{11149}
$$

$$
\left(\frac{1}{2}\right)^{4.9}=0.0335
$$

$$
\left(\frac{1}{2}\right)^{4.8}=0.0359
$$

$$
\left(\frac{1}{2}\right)^{5}=0.03125
$$

$$
\sim 4.9 \times 15=73.5 \text { days }
$$

ASSIGNMENT: 1) Worksheet 7.1 Characteristics of Exponential

 Graphs```
2) pg. 342 # 1-7, 10, 12, *15
```


## PC 12 WORKSHEET 7.1: Characteristics of Exponential Graphs

A. MODELLING GROWTH $\rightarrow$ INCREASING BY r\% $A=P(1+r)^{t}$

## COMPOUND INTEREST:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

A: accumulated (final) amount
P: principal (initial) amount
$r$ : rate of interest
$n$ : compounding period $O$
$t$ : time in years

1. Suppose you want to make a lot of money and do very little to earn it. One way to do this is to start a long-term investment. You are going to put $\$ 1000$ in the bank at $11 \%$ compounded annually for + years.
a) Use the compound interest formula then write a simplified exponential function

$$
A=1000\left(1+\frac{0.11}{1}\right)^{1 t}=
$$

$\qquad$
b) Use the graphing calculator to sketch the function.

c) What is the amount of the investment after 8 years?

d) How long did it take the investment to double?

e) If the original investment were $\$ 5500$, rewrite the equation and determine how much money you would have in 8 years.
2. Grandma gives you $\$ 1500$ and you do some great investing and get an average rate of return of $15.5 \%$ over a 10 year period. Write the exponential equation and determine the value of your 10 year investment.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

3. The populatiop, $P$ million, of British Columbia can be modeled by the equation

b) Determine the population projected for 2021?
c) Estimate when the population might reach 5 million.
4. For every meter, $n$, that you descend into water, $5 \%$ of light is blocked. Use the formula $\bigcirc$ for the amount when decreasing to create an exponential function that gives the percent, $\mathrm{O}_{0}$ $A$, of light remaining for $n$ meters.
a) Write a function to represent this situation. $A=100(1-0.05)^{n}$
b) Use the graphing calculator to sketch the function.

c) What percent of light remains at 6.5 meters down?
d) At what depth below the surface is $50 \%$ of the light still remaining?
e) If $7 \%$ of the light were blocked for every meter you descend, rewrite the equation and determine how much light would remain at 5 meters below the surface.
5. Coffee, tea, cola, and chocolate contain caffeine. When you consume caffeine, the percent, $P$, left in your body can be modelled as a function of the elapsed time, $t$ hours, by the equation $P=100(0.87)^{t}$
a) Use the graphing calculator to sketch the function.

b) Determine the percent of caffeine in your body after 5 hours.
c) Estimate how many hours it will take until only $30 \%$ of the caffeine remains.
