PC 12 SEC. 6.4 SOLVING TRIGONOMETRIC EQUATIONS USING IDENTITIES

INVESTIGATE SOLVING TRIGONOMETRIC EQUATIONS

- To solve some trigonometric equations, you need to make substitutions using trigonometric identities. This involves expressing the equation in terms of one trigonometric equation.

1. Solve $y=\sin 2 x-\sin x$ over the domain $-720^{\circ} \leq x \leq 720^{\circ}$.

Make a sketch of the graph and describe it in words.

175012
2. Use the double angle identity to rewrite the equation $y=\sin 2 x-\sin x$ in terms of single trigonometric functions

$$
\begin{aligned}
& y=2 \sin x \cos x-\sin x \\
& y=(\sin x) 2 \cos x-1)
\end{aligned}
$$

3. Solve $y=\sin 2 x-\sin x$ over the domain $720^{\circ} \leq x \leq 720^{\circ}$

Use the equivalent equation from (2) above to solve it algebraically.
$x=0,180,3600^{\circ} \rightarrow \sin x=0$ or $2 \cos x-1=0$
$\cos x=1 / 2$
REVIEW: SOLVE TRIGONOMETRIC EQUATIONS (NOTES 4.4 and 5.4)
Use processes learned in previous grades to solve equations

$$
0=\sin x(2 \cos x-1)
$$

\rightarrow isolate variables, square roots, factoring (difference of squares, trinomial factoring including decomposition, grouping two and two), quadratic formula, long or synthetic division etc.

Use processes learned in 4.3 notes (p.21-22 EX.4) to find angles given trigonometric ratios
(1) Ignore sign; Use your calculator or special triangle to find reference angle, θ_{r} (or points on the unit circle for possible quadrantal angles)
(2) Use sign of ratio, "ASTC" and θ_{r} to sketch all possible angles in standard position
(3) State the measures) of the possible angles in the required domain (use coterminal angles when necessary add/subtract full rotations as needed)

Use replacement method when the period is compressed or expanded in 5.4 notes (p.26 EX.2-3)
(1) Use replacement \rightarrow let $\theta=" b x "$
(2) Solve for θ (reference angle (θ_{r}), quadrants (ASTC), find θ_{1} and θ_{2})
(3) Replace each θ with " $b x$ ", then solve each equation for $x . \quad \rightarrow b x_{1}=\theta_{1}$ and $b x_{2}=\theta_{2}$
(4) Find the general solution \rightarrow add multiples the period (p) to each solution $(\mathrm{x}) \rightarrow x \pm p n, n \in I$

- Don't forget to identify any non-permissible values when solving.

EX. 1: Solve each equation algebraically over the domain $0 \leq x \leq 2 \pi$
a) $\sin 2 x-\cos x=0$

$$
\begin{aligned}
& 2 \sin x \cos x-\cos x=0 \\
& \cos x(2 \sin x-1)=0
\end{aligned}
$$

$$
\cos x=0 \quad 2 \sin x-1=0_{2}
$$

$2 / m_{3}$

b) $2 \cos x+1-\sin ^{2} x=3$

$$
\begin{aligned}
& 2 \cos x+\cos ^{2} x-3=0 \\
& \cos ^{2} x+2 \cos x-3=0
\end{aligned}
$$

$1 e+a=\cos x$

$$
\begin{aligned}
& a^{2}+2 a-3=0 \\
& (a-1)(a+3)=0 \\
& a-1=0 \quad a+3=0 \\
& a=1 \quad a=-3 \\
& \cos x=1
\end{aligned} \quad \cos x=-38
$$

$\mathcal{x _ { 1 } = 0 x _ { 2 } = 2 \pi}$ in ot possible
SOLVE AN EQUATION WITH A QUOTIENT IDENTITY SUBSTITUTION
EX. 2: a) Solve the equation $\sin ^{2} x=\frac{1}{2} \tan x \cos x$ algebraically over the domain $0^{\circ} \leq x \leq 360^{\circ}$

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2} \frac{\sin x}{\cos x} \cos x \\
& \sin ^{2} x=\frac{1}{2} \sin x \\
& 2 \sin ^{2} x=\sin x \\
& 2 \sin ^{2} x-\sin x=0 \\
& \sin x(2 \sin x-1)=0
\end{aligned}
$$

$$
x_{1}=0
$$

$$
x_{2}=180^{\circ}
$$

$$
x_{3}=360^{\circ}
$$

or $2 \sin x-1=0$

$$
\sin x=\frac{1}{2}
$$

$$
x_{4}=30^{\circ}
$$

$$
\theta_{R}=30^{\circ}
$$

$$
\begin{equation*}
x_{5}=150^{\circ} \tag{S}
\end{equation*}
$$

b) Verify your answer graphically. Solve the equation

$$
\begin{array}{ll}
y_{1}=\sin (x)^{2} & \cos x \neq 0 \\
y_{2}=\frac{1}{2} \tan x \cos x & \therefore x \neq 90^{\circ}, 270^{\circ}
\end{array}
$$

$$
\begin{aligned}
& 2 \cos ^{2} x-1=\cos x \\
& 2 \cos ^{2} x-\cos x-1=0
\end{aligned}
$$

$$
\begin{array}{rl}
\text { let } a=\cos x & \quad-2+1=-1 \\
2 a^{2}-a-1=0 \\
2 a^{2}-2 a+a-1=0 \\
2 a(a-1)+1(a-1)=0 \\
(2 a+1)(a-1)=0 \\
2 a+1=0 & a-1=0 \\
a=-1 / 2 \quad a=1
\end{array}
$$

Non-permissible values?

DETERMINE THE GENERAL SOLUTION USING RECIPROCAL IDENTITIES
EX. 4: Algebraically solve $3 \cos x+2=5 \sec x$. Give general solutions expressed in degrees.

$$
\left.(\cos x)(3 \cos x+2)=5\left(\frac{1}{\cos x}\right) x \cos x\right)
$$

$$
3 \cos ^{2} x+2 \cos x=5
$$

$$
3 \cos ^{2} x+2 \cos x-5=0
$$

let $a=\cos x$

$$
\begin{aligned}
& \text { et } a=\cos x \\
& 3 a^{2}+2 a-5=0 \\
& 3 a^{2}-3 a+5 a-5=0 \\
& 3 a(a-1)+5(a-1)=0 \\
&(3 a+5)(a-1)=0 \\
& 3 a+5=0 \text { or } \quad a-1
\end{aligned}=0
$$

1) Worksheet 6.4
2) pg. 320 \# 1-6, 8, 9, 11, 14, 16 *, 18

PC 12 WORKSHEET 6.4: SOLVING TRIGONOMETRIC

EQUATIONS

- Solve each equation algebraically. Answers are provided for you to check.
- You may need to use identities to rewrite the equation before solving.

1. Solve each equation for θ, with $0 \leq \theta \leq 360^{\circ}$
a) $\cos \theta+1=0 \quad \boldsymbol{\theta}=\mathbf{1 8 0}^{\circ}$
b) $\tan \theta(\csc \theta+2)=0 \quad \boldsymbol{\theta}=\mathbf{0}^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{2 1 0}^{\circ}, \mathbf{3 3 0}{ }^{\circ}, \mathbf{3 6 0}{ }^{\circ}$
c) $\sec ^{2} \theta+2 \sec \theta=0 \quad \boldsymbol{\theta}=\mathbf{1 2 0}^{\circ}, \mathbf{2 4 0}^{\circ}$
d) $\sin 2 \theta-\cos \theta=0 \quad \boldsymbol{\theta}=\mathbf{3 0}^{\circ}, \mathbf{9 0}^{\circ}, \mathbf{1 5 0}^{\circ}, \mathbf{2 7 0}^{\circ}$
e) $2 \cos ^{2} \theta+3 \sin \theta-3=0 \quad \boldsymbol{\theta}=\mathbf{3 0}^{\circ}, \mathbf{9 0}^{\circ}, \mathbf{1 5 0}^{\circ}$
f) $4 \cos ^{2} \theta-3=0 \quad \boldsymbol{\theta}=\mathbf{3 0}^{\circ}, \mathbf{1 5 0}^{\circ}, \mathbf{2 1 0}^{\circ}, \mathbf{3 3 0}^{\circ}$
2. Solve each equation (or inequality) for θ, with $0 \leq \theta \leq 2 \pi$
a) $3 \sec \theta-\cos \theta-2=0 \quad \boldsymbol{\theta}=\mathbf{0}, \mathbf{2 \pi}$
b) $2 \cos ^{4} \theta-3 \cos ^{2} \theta+1=0 \quad \boldsymbol{\theta}=\mathbf{0}, \frac{\pi}{4}, \frac{3 \pi}{4}, \boldsymbol{\pi}, \frac{5 \pi}{4}, \frac{7 \pi}{4}, 2 \pi$
c) $3 \tan ^{2} \theta-1=0$
$\theta=\frac{\pi}{6}, \frac{5 \pi}{6} \frac{7 \pi}{6}, \frac{11 \pi}{6}$
d) $\sin \theta \leq 0-1=0 \quad \boldsymbol{\pi} \leq \boldsymbol{\theta} \leq \mathbf{2 \pi}$
3. Solve each equation for θ, with $0 \leq \theta \leq 360^{\circ}$
a) $2 \cos ^{2} \theta-\cos \theta=1 \quad \boldsymbol{\theta}=\mathbf{0}^{\circ}, \mathbf{1 2 0}^{\circ}, \mathbf{2 4 0}^{\circ}, \mathbf{3 6 0 ^ { \circ }}$
b) $\tan ^{2} \theta-3=0$
$\theta=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
c) $\sin \theta+2 \sin \theta \cos \theta=0$
$\theta=\mathbf{0}^{\circ}, \mathbf{1 2 0}^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{2 4 0}^{\circ}, \mathbf{3 6 0}^{\circ}$
d) $\cos 2 \theta+\cos \theta=0$
$\theta=60^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{3 0 0}^{\circ}$
4. Solve each equation for θ, with $0 \leq \theta \leq 2 \pi$
a) $2 \sin x \cos x+\sqrt{3} \cos x=0 \quad \boldsymbol{\theta}=\frac{\pi}{2}, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
b) $\cot ^{2} \theta+1=0 \quad \boldsymbol{\theta}=$ no solution (explain?)
c) $\sin ^{2} \theta+\sin \theta \cos \theta=0 \quad \boldsymbol{\theta}=\mathbf{0}, \frac{3 \pi}{4}, \boldsymbol{\pi}, \frac{7 \pi}{4}, 2 \pi$
d) $2+\sec \theta=0$
$\boldsymbol{\theta}=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
