INVESTIGATE COMPARING TWO TRIGONOMETRIC EQUATIONS

1. Graph the curves $y=\sin x$ and $y=\cos x \tan x$ over the domain $-360^{\circ} \leq x \leq 360^{\circ}$.
/-

2. Complete the table of values for each

$$
\begin{aligned}
y & =\cos x+\operatorname{an} x \\
& =\cos (90) \tan (90) \\
& =(0)(\text { nude })=u_{n d e}
\end{aligned}
$$

x	0	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$\boldsymbol{y}=\sin \boldsymbol{x}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$\frac{\sqrt{3}}{2}$	$\frac{-1}{2}$	0

x	0	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$y=\cos x \tan \boldsymbol{c}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	error	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$	ert	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{2}$	0	

- What do you notice?
same graphs except that the $y=\cos x \tan x$ graph has holes (undefined values)

3. Use your knowledge $\tan x=\frac{\sin x}{\cos x}$ to simplify the expression $y=\cos x \tan x$

$$
\begin{aligned}
& y=\cos x \tan x \\
& y=\cos x\left(\frac{\sin x}{\cos x}\right) \\
& y=\sin x
\end{aligned} \text { but } \cos x \neq 0
$$

4. a) Are the curves $y=\sin x$ and $y=\cos x \tan x$ identical? Explain.
no, because $y=$ cos $x \tan x$ has same holes (undefined values)
b) Why was it important to look at the graphs and the table of values?
because you might miss the non-permissible
values if you don't use the table
5. What are the non-permissible values of x in the equation $\sin x=\cos x \tan x$?

$$
x \neq 90^{\circ}+180^{\circ} n, n \in I
$$

reflect in x-axis
phase shift right $\frac{\pi}{2}$
6. a) Are the curves $y=\cos x$ and $y=-\sin \left(x-\frac{\pi}{2}\right)$ identical?

b) What are the non-permissible values of x in the equation $\cos x=-\sin \left(x-\frac{\pi}{2}\right)$
all values are permissible

Trigonometric Identity: a trigonometric equation that is true for allpermissible values of the variable in the expressions on both sides of the equation.

We can use identities to simplify expressions $O R$ to prove other identities
We can VERIFY identities:

- numerically by substituting a value in for the variable. Result: the LHS = RHS
- graphically by graphing the LHS $\rightarrow \mathrm{Y}_{1}$ and $\mathrm{RHS} \rightarrow \mathrm{Y}_{2}$. Result: identical graphs

We can PROVE identities by

- algebraically Result: the LHS $=$ RHS for all values of x

REVIEW: BASIC ALGEBRA INVOLVING RATIONAL EXPRESSIONS

Simplify each of the following:

b) $a \cdot \frac{b^{2}}{a^{2}} \cdot \frac{1}{b}=\frac{b}{a}$
c) $\frac{1}{\frac{1}{a}}=a$
1
d) $\frac{\frac{a}{\frac{b}{d}}}{\frac{b}{d}}=\frac{a d}{b c}$

$$
\frac{a}{b} \cdot \frac{d}{c}
$$

e) $\frac{a+\frac{1}{b}}{b+\frac{a}{b}}=\frac{\frac{a b}{b}+\frac{1}{b}}{\frac{b^{2}}{b}+\frac{a}{b}}=\frac{\frac{a b+1}{b}}{\frac{b^{2}+a}{b b}}$
$=\frac{a b+1}{b} \cdot \frac{b}{b^{2}+a}$
$=\frac{a b+1}{b^{2}+a}$
f) $\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}$
9) $\frac{a}{b}+\frac{b}{c}=\frac{a c}{b c}+\frac{b^{2}}{b c}$
$=\frac{a c+b^{2}}{b c}$

RECIPROCAL IDENTITIES

$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

QUOTIENT IDENTITIES

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

EX. 1: Given $\cot \theta=\frac{\cos \theta}{\sin \theta}$
a) Determine the non-permissible values, in degrees.

$$
\sin \theta \neq 0
$$

b) Numerically verify the following are solutions to the equation

i) $\theta=45^{\circ}$

$$
\begin{array}{rlr}
\cot 45^{\circ}=\frac{\cos 45^{\circ}}{\sin 45^{\circ}} & \frac{\sqrt{3}}{1}=\frac{\sqrt{3}}{2} \\
\frac{1}{1}=\frac{\sin (}{\frac{1}{\sqrt{2}}} & 1=1 \quad \frac{\sqrt{3}}{1}=\frac{\sqrt{3}}{1}
\end{array}
$$

c) Graphically decide whether the equation could be an identity over the domain $-360^{\circ} \leq x \leq 360^{\circ}$ 360°

$$
\begin{aligned}
& y_{1}=\cot \theta=\frac{1}{\tan \theta} \\
& y_{2}=\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

Same 1 graph.

USE IDENTITIES TO SIMPLIFY EXPRESSIONS
We can use identities to simplify expressions $O R$ to prove other identities (equations)
EX. 2: Given $\frac{\sec \theta}{\tan \theta}$

a) Determine the non-permissible values of θ, in radians.

$$
\begin{array}{r}
\sec \theta=\frac{1}{\cos \theta} \\
\text { ify the expression } \\
\operatorname{len} \theta=\frac{\sin \theta}{\cos \theta} \quad \therefore \cos \theta \neq 0 \Rightarrow \theta \neq 90^{\circ}+180^{\circ} n . \\
n \in I
\end{array}
$$

b) Simplify the expression

$$
\begin{aligned}
& =\frac{\frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}} \\
& =\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}=\frac{1}{\sin \theta}=\csc \theta
\end{aligned}
$$

EX. 3: Prove the following identities (algebraically)
a)

$$
\sin \theta\left(\frac{1}{\cos \theta}\right)\left(\frac{\cos \theta}{\sin \theta}\right) \quad=
$$

b)

$$
\sec \vartheta=\tan \vartheta \csc \vartheta
$$

$$
\begin{aligned}
& \frac{1}{\cos \theta} \\
& \sec \theta=\sec \theta
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{\cot \theta}{\csc \theta}=\cos \theta \\
& \frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}} \\
& \frac{\cos \theta}{\sin \theta} \cdot \frac{\sin \theta}{1} \\
& \cos \theta=\cos \theta
\end{aligned}
$$

OR
d)

$$
\begin{aligned}
& \frac{1}{\cos \theta}(1+\cos \theta) \\
& \frac{1}{\cos \theta}+\frac{\cos \theta}{\cos \theta} \\
& \sec \theta+1
\end{aligned}
$$

e)

$$
\begin{array}{cc}
\frac{\sin \theta+\cos \theta}{\sin \theta}=1+\cot \theta & \frac{\text { or }}{\frac{\sin \theta}{\sin \theta}+\frac{\cos \theta}{\sin \theta}} \tag{OR}\\
1+\cot \theta \\
1+\frac{\cos \theta}{\sin \theta} \\
\frac{\sin \theta}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \\
\frac{\sin \theta+\cos \theta}{\sin \theta}
\end{array}
$$

Other important basic identities are based on the Pythagorean Formula Use the unit circle diagram and the Pythagorean Formula $a^{2}+b^{2}=c^{2}$

- θ is any angle is standard position
- $P(x, y)$ is any point on its terminal arm, at a distance " $r=$ $1^{\prime \prime}$ from the origin
- Reference triangle is created by drawing a line perpendicular to the x-axis through point $P(x, y)$
a) $\sin \theta=y$
b) $\cos \theta=$ \qquad c) $\tan \theta=\frac{y}{x}$ or $\frac{\sin \theta}{\cos \theta}$
$\rightarrow P(x, y)$ on any circle can be labeled $P(\cos \theta, \sin \theta)$
\rightarrow Write the relationship between x, y and 1

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
\cos ^{2} \theta+\sin ^{2} \theta=1
\end{gathered}
$$

\rightarrow Write the relationship between $\cos \theta, \sin \theta$, and 1
How could you prove the other two Pythagorean identities?

$$
\begin{aligned}
& \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
& \frac{\cos ^{2} \theta+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}}{}
\end{aligned}
$$

$$
\begin{aligned}
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \\
& \frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}
\end{aligned}
$$

PYTHAGOREAN IDENTITIES

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

$$
1+\cot ^{2} \theta=\csc ^{2} \theta
$$

- Write two different forms of the first Pythagorean identity: $\cos ^{2} x+\sin ^{2} x=1$
(1) $\cos ^{2} \theta=1-\sin ^{2} \theta$
(2) $\sin ^{2} \theta=1-\cos ^{2} \theta$
(3) $-\cos ^{2} \theta=\sin ^{2} \theta-1$
(4) $-\sin ^{2} \theta=\cos ^{2} \theta-1$

USE THE PYTHAGOREAN IDENTITY

EX. 4: Verify the equation $\tan ^{2} \theta+1=\sec ^{2} \boldsymbol{\theta}$
a) numerically for $\theta=\frac{3 \pi}{4}$

$$
y_{1}=\tan ^{2} x+1
$$

$$
\begin{aligned}
\tan ^{2}\left(\frac{3 \pi}{4}\right)+1 & =\sec ^{2}\left(\frac{3 \pi}{4}\right) \\
(-1)^{2}+1 & =(-\sqrt{2})^{2} \\
1+1 & =2 \\
2 & =2
\end{aligned}
$$

EX. 5: Prove the following identities (algebraically)
a)

$$
\begin{array}{ll}
1-\cos ^{2} \theta= & \cos ^{2} \theta \tan ^{2} \theta \\
\sin ^{2} \theta & \cos ^{2} \theta\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right) \\
\sin ^{2} \theta= & \sin ^{2} \theta
\end{array}
$$

b)

$$
\begin{gathered}
\csc \theta \cos ^{2} \theta+\sin \theta=\csc \theta \\
\left(\frac{1}{\sin \theta}\right)^{\cos ^{2} \theta+\sin \theta} \\
\frac{\cos ^{2} \theta}{\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta} \\
\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta} \\
\frac{1}{\sin \theta}=\frac{1}{\sin \theta}
\end{gathered}
$$

c)

$$
\begin{aligned}
\begin{aligned}
& \cot \theta+\tan \theta=\csc \theta \sec \theta \\
& \frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& \frac{\cos ^{2} \theta}{\sin \theta \cos \theta}+\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \\
& \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta} \\
& \frac{1}{\sin \theta \cos \theta}
\end{aligned} & \left.=\frac{1}{\sin \theta}\right)\left(\frac{1}{\cos \theta}\right) \\
(\sec x-\underbrace{1)(\sec x+1)} & =\frac{1}{\cot ^{2} x} \\
=\sec ^{2} x-1 & =\frac{1}{\frac{1}{\tan ^{2} x}} \\
=\tan ^{2} x & =\frac{1 \cdot \tan ^{2} x}{1} \\
\tan ^{2} x & =\tan ^{2} x
\end{aligned}
$$

d)
e)

$$
\begin{aligned}
\cos ^{2} x & =\frac{\cot ^{2} x}{1+\cot ^{2} x} \\
& =\frac{\cot ^{2} x}{\csc ^{2} x} \\
& =\frac{\cos ^{2} x}{\frac{\sin ^{2} x}{\frac{1}{\sin ^{2} x}}}=\frac{\cos ^{2} x}{\sin ^{2} x}\left(\frac{\sin ^{2} x}{1}\right) \\
& =\cos ^{2} x
\end{aligned}
$$

ASSIGNMENT: 1) Worksheet 6.1 Simplify Trigonometric Expressions
2) pg. 296 \#1-8, 10, 12, 14-16

PC 12 WORKSHEET 6.1: SIMPLIFY TRIGONOMETRIC

- Simplify by expressing each of the following in terms of a single trigonometric function.
a) $\frac{\cos \vartheta}{\sin \vartheta}=\cot \theta$
b) $\frac{\cos ^{2} \vartheta}{\sin ^{2} \vartheta}=\cot ^{2} \theta$
d) $1-\cos ^{2} \vartheta$
$\sin ^{2} \theta$
g) $\sec ^{2} \vartheta-1$
$\tan ^{2} \theta$
j)

$$
\begin{gathered}
\underbrace{\sin ^{2} \vartheta+\cos ^{2} \vartheta}_{=1+1}+1 \\
=2
\end{gathered}
$$

m) $\frac{\sqrt{1-\sin ^{2} \vartheta}}{\sqrt{1+\tan ^{2} \vartheta}}$

$$
\begin{aligned}
& =\frac{\sqrt{\cos ^{2} \theta}}{\sqrt{\sec ^{2} \theta}} \\
& =\frac{\cos \theta}{\sec \theta}- \\
& =\cos \theta \cos \theta \\
& =\cos ^{2} \theta
\end{aligned}
$$

c) $\tan \vartheta \sec \vartheta \cos \vartheta$

$$
\left(\frac{\sin \theta}{\cos \theta}\right)\left(\frac{1}{\cos \theta}\right) \cos \theta
$$

$$
\tan \theta
$$

f) $1+\tan ^{2} \vartheta$
$\sec ^{2} \theta$
i) $1-\csc ^{2} \vartheta$
$-\cot ^{2} \theta$
I) $\sin ^{2} \vartheta+\cos ^{2} \vartheta+\tan ^{2} \vartheta$ $=1+\tan ^{2} \theta$

$$
=\sec ^{2} \theta
$$

o)

$$
\begin{aligned}
& \frac{\sin ^{2} \vartheta+\sin \vartheta}{\cos \vartheta+\cos \vartheta \sin \vartheta} \\
& \frac{\sin \theta(\sin \theta+1)}{\cos \theta(1+8 \sin \theta)}
\end{aligned}
$$

$\tan \theta$

