PC 12 SEC 6.1: RECIPROCAL, QUOTIENT & PYTHAGOREAN IDENTITIES

INVESTIGATE COMPARING TWO TRIGONOMETRIC EQUATIONS

2. Complete the table of values for each

	x	0	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
3	y = sinx	0	12	5	Γ	[m[N	- 12	0	- <u>1</u> 2	- <u>5</u> 2	-1	-13	-1 2	0

x	0	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
y = cosx tan	r 0	12	512	error	V3 2	-12	0	-1-2	512	ert	-5-2	-1N	0

Same graphs except that the y=cus xtanx graph has holes (undefined values) What do you notice?

3. Use your knowledge $tanx = \frac{sinx}{cosx}$ to simplify the expression y = cosx tanx

$$y = \cos x + \sin x$$

$$y = \cos x \left(\frac{\sin x}{\cos x} \right)$$

$$y = \sin x$$

$$y = \sin x$$

4. a) Are the curves y = sinx and y = cosx tanx identical? Explain.

b) Why was it important to look at the graphs and the table of values?

5. What are the non-permissible values of x in the equation sinx = cosx tan x?

all values are permissible

<u>**Trigonometric Identity</u>**: a trigonometric equation that is true for allpermissible values of the variable in the expressions on both sides of the equation.</u>

We can use identities to simplify expressions OR to prove other identities

We can <u>VERIFY</u> identities:

- numerically by substituting a value in for the variable. Result: the LHS = RHS
- graphically by graphing the LHS \rightarrow Y₁ and RHS \rightarrow Y₂. Result: identical graphs

We can **<u>PROVE</u>** identities by

• algebraically Result: the LHS = RHS for all values of x

REVIEW: BASIC ALGEBRA INVOLVING RATIONAL EXPRESSIONS

Simplify each of the following:

a)
$$a \cdot \frac{b}{a} \cdot \frac{2}{a} \cdot \frac{1}{a} = 1$$

b) $a \cdot \frac{b^2}{a^2} \cdot \frac{1}{b} = \frac{b}{a}$
c) $\frac{1}{\frac{1}{a}} = a$

.

I

d)
$$\frac{a}{b} = \frac{ad}{bc}$$

 $\frac{a}{b} \cdot \frac{d}{c}$
f) $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$
g) $\frac{a}{b} + \frac{b}{c} = \frac{ac}{bc} + \frac{b^2}{bc}$
f) $\frac{a}{b} + \frac{c}{b} = \frac{ac}{bc} + \frac{b^2}{bc}$

RECIPROCAL IDENTITIES

$$csc\theta = \frac{1}{sin\theta}$$
 $sec\theta = \frac{1}{cos\theta}$ $cot\theta = \frac{1}{tan\theta}$

QUOTIENT IDENTITIES

$$tan\theta = \frac{sin\theta}{cos\theta} \qquad cot\theta = \frac{cos\theta}{sin\theta}$$

VERIFY A POTENTIAL IDENTITY NUMERICALLY & GRAPHICALLY

EX. 1: Given $\cot\theta = \frac{\cos\theta}{\cos\theta}$ sinθ

a) Determine the non-permissible values, in degrees.

e non-permissible values, in degrees.

$$Sin \theta \neq 0$$
 $\theta = 0$, $|\xi 0\rangle$, 360° and $|80^{\circ}n$, $n \in I$

b) Numerically verify the following are solutions to the equation

c

USE IDENTITIES TO SIMPLIFY EXPRESSIONS

We can use identities to simplify expressions OR to prove other identities (equations)

<u>EX.</u> 2: Given $\frac{sec\theta}{tan\theta}$

a) Determine the non-permis

$$fun \theta = \frac{51n\theta}{(15t)} : (05\theta \neq 0) \implies \theta \neq 90^{\circ} + 180^{\circ}n,$$

Cuse b) Simplify the expression

 $Sec \Theta = 1$

$$= \frac{1}{\frac{C_{050}}{\frac{5!n0}{C_{050}}}}$$
$$= \frac{1}{\frac{1}{C_{050}}} \cdot \frac{C_{050}}{Sin0} = \frac{1}{Sin0} = C_{500}$$

<u>EX.</u> 3: Prove the following identities (algebraically)

a)

c)

$$\frac{\partial \mathbf{R}}{\partial \mathbf{x}} = \mathbf{R}$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{x}} =$$

Sme

PYTHAGOREAN IDENTITY

Other important basic identities are based on the Pythagorean Formula Use the unit circle diagram and the Pythagorean Formula $a^2 + b^2 = c^2$

$$() \quad (US^{2}\Theta) = |-SIn^{2}\Theta)$$

$$(2) \quad SIn^{2}\Theta) = |-(US^{2}\Theta)$$

$$(3) \quad -(US^{2}\Theta) = SIn^{2}\Theta - 1$$

$$(4) \quad -SIn^{2}\Theta) = (US^{2}\Theta - 1)$$

USE THE PYTHAGOREAN IDENTITY

<u>EX.</u> 4: Verify the equation $tan^2\theta + 1 = sec^2\theta$

a) numerically for $\theta = \frac{3\pi}{4}$ $-\left|\partial_{n}^{2}\left(\frac{3\pi}{4}\right)^{2}+\right| = Sec^{2}\left(\frac{3\pi}{4}\right)$ $\left(-1\right)^{2}+1 = (-\sqrt{2})^{2}$ $\left(-1\right)^{2}+1 = (-\sqrt{2})^{2}$ $\left(-1\right)^{2} = 2$

c)
$$\cot \theta + \tan \theta = \csc \theta \sec \theta$$

 $\frac{C(S)\theta}{S(n)\theta} + \frac{S(n)\theta}{C(0S)\theta}$
 $\frac{C(S^2\theta)}{S(n)\thetaC(0S)\theta} + \frac{S(n^2\theta)}{S(n)\thetaC(0S)\theta}$
 $\frac{C(S^2\theta + S(n^2\theta))}{S(n)\thetaC(0S)\theta}$
 $\frac{1}{S(n)\thetaC(0S)\theta} + \frac{1}{S(n)\thetaC(0S)\theta}$
d) $(\sec x - 1)(\sec x + 1) = \frac{1}{\cot^2 x}$
 $= 5\csc^2 x - 1$
 $= +4n^2 x$
 $= \frac{1}{4n^2 x}$
 $= \frac{1}{4n^2 x}$
 $= \frac{1}{4n^2 x}$

e)

$$\cos^{2} X = \frac{\cot^{2} x}{1 + \cot^{2} x}$$

$$= \frac{C d^{2} x}{C S C^{2} x}$$

$$= \frac{C O S^{2} x}{C S C^{2} x} = \frac{C O S^{2} x}{S m^{2} x} \left(\frac{S m^{2} x}{1}\right)$$

$$= \frac{1}{S m^{2} x}$$

$$C U S^{2} x$$
Worksheet 6.1 Simplify Trigonometric Expressions
pg. 296 #1-8, 10, 12, 14-16

1) Wo 2) pg ASSIGNMENT: 9 , . .

• Simplify by expressing each of the following in terms of a single trigonometric function.

a)
$$\frac{\cos \vartheta}{\sin \vartheta} = c0t\theta$$

b) $\frac{\cos^2 \vartheta}{\sin^2 \vartheta} = c0t^2\theta$
c) $\tan \vartheta \sec \vartheta \cos \vartheta$
tan ϑ
d) $1 - \cos^2 \vartheta$
e) $\cos^2 \vartheta - 1$
f) $1 + \tan^2 \vartheta$
f) $1 + \tan^2 \vartheta$
f) $1 - \tan^2 \vartheta$
g) $\sec^2 \vartheta - 1$
h) $1 - \sec^2 \vartheta$
i) $1 - \csc^2 \vartheta$
i) $1 - \csc^2 \vartheta$
j) $\sin^2 \vartheta + \cos^2 \vartheta + 1$
k) $\csc^2 \vartheta - \cot^2 \vartheta$
i) $\sin^2 \vartheta + \cos^2 \vartheta + 1$
k) $\csc^2 \vartheta - \cot^2 \vartheta$
i) $\sin^2 \vartheta + \cos^2 \vartheta + \tan^2 \vartheta$
i) $tcd^2\theta - cd^2\theta$
i) $\sin^2 \vartheta + \cos^2 \vartheta + \tan^2 \vartheta$
ii) $tcd^2\theta - cd^2\theta$
ii) $\sin^2 \vartheta + \cos^2 \vartheta + \tan^2 \vartheta$
iii) $\sin^2 \vartheta + \cos^2 \vartheta + \tan^2 \vartheta$
iii) $\sin^2 \vartheta + \cos^2 \vartheta + \tan^2 \vartheta$
iii) $\frac{\sqrt{1 - \sin^2 \vartheta}}{\sqrt{1 + \tan^2 \vartheta}}$
n) $\frac{\sqrt{\sec^2 \vartheta - 1}}{\sqrt{\csc^2 \vartheta - 1}}$
i) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin^2 \vartheta + \sin \vartheta}{\cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin \vartheta + \cos \vartheta + \cos \vartheta \sin \vartheta}{\cos \vartheta + \cos \vartheta + \cos \vartheta \sin \vartheta}$
iii) $\frac{\sin \vartheta + \cos \vartheta + \cos$